Project Title	Funding	Institution		
Upper motor neuron plasticity in the MeCP2-duplication syndrome of autism	\$62,500	Baylor College of Medicine		
Understanding the basic neurobiology of Pitt-Hopkins syndrome	\$60,000	The University of Alabama at Birmingham		
Underlying mechanisms in a cerebellum-dependent model of autism	\$60,000	Harvard Medical School		
TrkB agonist therapy for sensorimotor dysfunction in Rett syndrome	\$147,806	Case Western Reserve University		
Translational regulation of adult neural stem cells	\$396,944	University of Wisconsin - Madison		
TMLHE deficiency and a carnitine hypothesis for autism	\$60,000	Baylor College of Medicine		
The role of UBE3A in autism	\$312,501	Harvard Medical School		
The role of MeCP2 in Rett syndrome	\$382,858	University of California, Davis		
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$13,400	Washington University in St. Louis		
The role of genetics in communication deficits in autism spectrum disorders	\$60,000	University of Pennsylvania		
The microRNA pathway in translational regulation of neuronal development	\$352,647	University of Massachusetts Medical School		
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Children's Memorial Hospital, Chicago		
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$395,134	University of Illinois at Urbana Champaign		
Study of fragile X mental retardation protein in synaptic function and plasticity	\$317,077	University of Texas Southwestern Medical Center		
Studying Rett and Fragile X syndrome in human ES cells using TALEN technology	\$0	Whitehead Institute for Biomedical Research		
Sex differences in early brain development; Brain development in Turner syndrome	\$155,873	University of North Carolina at Chapel Hill		
Role of Sema7A in functional organization of neocortex	\$423,750	Mount Sinai School of Medicine		
Role of intracellular mGluR5 in fragile X syndrome and autism	\$75,000	Washington University in St. Louis		
Revealing protein synthesis defects in fragile X syndrome with new chemical tools	\$340,520	Stanford University		
Regulation of cortical critical periods in a mouse model of autism	\$60,000	Northwestern University		
Regulation of 22q11 genes in embroyonic and adult forebrain (supplement)	\$24,262	George Washington University		
Regulation of 22q11 genes in embroyonic and adult forebrain	\$308,631	George Washington University		
Quantitative proteomic approach towards understanding and treating autism	\$75,000	Emory University		
Probing the neural basis of social behavior in mice	\$62,500	Massachusetts Institute of Technology		
Probing synaptic receptor composition in mouse models of autism	\$124,998	Boston Children's Hospital		
Probing a monogenic form of autism from molecules to behavior	\$0	Stanford University		
Predicting phenotypic trajectories in Prader-Willi syndrome	\$310,752	Vanderbilt University Medical Center		
Pleiotropic roles of dyslexia genes in neurodevelopmental language impairments	\$42,232	Yale University		
Physiological studies in a human stem cell model of 15q duplication syndrome	\$60,000	University of Connecticut		
Pathophysiology of MECP2 spectrum disorders (Career Development Award Proposal)	\$179,981	Baylor College of Medicine		
Olfactory abnormalities in the modeling of Rett syndrome	\$351,575	Johns Hopkins University		

Project Title	Funding	Institution	
Novel candidate mechanisms of fragile X syndrome	\$92,448	Yale University	
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$419,095	Dana-Farber Cancer Institute	
Neurobiology of RAI1, the causal gene for Smith-Magenis syndrome	\$155,380	Stanford University	
Neurobiological mechanism of 15q11-13 duplication autism spectrum disorder	\$380,625	Beth Israel Deaconess Medical Center	
Neural mechanisms underlying autism behaviors in SCN1A mutant mice	\$94,903	University of Washington	
Nav1.1 channels, neural circuits, and autism	\$10,213	University of Washington	
Multigenic basis for autism linked to 22q13 chromosomal region	\$125,000	Hunter College of the City University of New York (CUNY) jointly with Research Foundation of CUNY	
Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$400,000	University of Texas Southwestern Medical Center	
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$0	Stanford University	
MicroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Massachusetts General Hospital	
Mesocorticolimbic dopamine circuitry in mouse models of autism	\$436,362	Stanford University	
MeCP2 modulation of BDNF signaling: Shared mechanisms of Rett and autism	\$314,059	University of Alabama at Birmingham	
Mechanisms of synapse elimination by autism-linked genes	\$434,883	University of Texas Southwestern Medical Center	
Mechanisms of motor skill learning in the fragile X mouse model	\$308,138	University of Nebraska Medical Center	
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$406,760	University of Texas Southwestern Medical Center	
Mechanism of UBE3A imprint in neurodevelopment	\$34,439	University of California, Davis	
Making the connection between autism, serotonin and hedgehog signaling	\$125,635	Medical Research Council-National Institute for Medical Research	
L-type calcium channel regulation of neuronal differentiation	\$33,002	Stanford University	
Longitudinal MRI study of brain development in fragile X	\$901,844	Stanford University	
Language development in fragile X syndrome	\$584,381	University of California, Davis	
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$0	Baylor College of Medicine	
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$53,942	University of Texas Southwestern Medical Center	
Investigating the homeostatic role of MeCP2 in mature brain	\$35,832	Baylor College of Medicine	
Identification of targets for the neuronal E3 ubiquitin ligase PAM	\$0	Massachusetts General Hospital	
Grammatical development in boys with fragile X syndrome and autism	\$148,500	University of Wisconsin - Madison	
Genotype-phenotype relationships in fragile X families	\$612,413	University of California, Davis	
Genetic rescue of fragile X syndrome in mice by targeted deletion of PIKE	\$0	Albert Einstein College of Medicine of Yeshiva University	
Genetic and developmental analyses of fragile X mental retardation protein	\$438,391	Vanderbilt University Medical Center	

Project Title	Funding	Institution	
Genetically defined stem cell models of Rett and fragile X syndrome	\$350,000	Whitehead Institute for Biomedical Research	
Functional circuit disorders of sensory cortex in ASD and RTT	\$254,976	University of Pennsylvania	
Functional and anatomical recovery of synaptic deficits in a mouse model of Angelman Syndrome	\$56,000	University of North Carolina at Chapel Hill	
Fragile X syndrome target analysis and its contribution to autism	\$134,477	The Rockefeller University	
Emergence and stability of autism in fragile X syndrome (supplement)	\$87,314	University of South Carolina	
Emergence and stability of autism in fragile X syndrome	\$358,000	University of South Carolina	
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	George Washington University	
Dysregulation of protein synthesis in fragile X syndrome	\$1,117,731	National Institutes of Health	
Dysregulation of mTOR signaling in fragile X syndrome (supplement)	\$72,034	Albert Einstein College of Medicine of Yeshiva University	
Dysregulation of mTOR signaling in fragile X syndrome	\$415,000	Albert Einstein College of Medicine of Yeshiva University	
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$278,656	University of Texas Southwestern Medical Center	
Cortactin and spine dysfunction in fragile X	\$32,875	University of California, Irvine	
Coordinated control of synapse development by autism-linked genes	\$0	University of Texas Southwestern Medical Center	
Bi-directional regulation of Ube3a stability by cyclic AMP-dependent kinase	\$60,000	University of North Carolina at Chapel Hill	
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$470,063	University of California, Irvine	
Autism phenotypes in Tuberous Sclerosis: Risk factors, features & architecture	\$149,881	King's College London	
A stem cell based platform for identification of common defects in autism spectrum disorders	\$0	The Scripps Research Institute - California	
A longitudinal MRI study of brain development in fragile X syndrome	\$610,416	University of North Carolina at Chapel Hill	
Allelic choice in Rett syndrome	\$390,481	Winifred Masterson Burke Medical Research Institute	
A family-genetic study of autism and fragile X syndrome	\$751,420	Northwestern University	
Activity-dependent phosphorylation of MeCP2	\$177,055	Harvard Medical School	
A cerebellar mutant for investigating mechanisms of autism in Tuberous Sclerosis	\$149,958	Boston Children's Hospital	
Abnormal network dynamics and "learning" in neural circuits from Fmr1-/-mice	\$192,500	University of California, Los Angeles	
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$300,000	Columbia University	